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The linear stability of variable viscosity, miscible core–annular flows is investigated.
Consistent with pipe flow of a single fluid, the flow is stable at any Reynolds number
when the magnitude of the viscosity ratio is less than a critical value. This is in
contrast to the immiscible case without interfacial tension, which is unstable at any
viscosity ratio. Beyond the critical value of the viscosity ratio, the flow can be unstable
even when the more viscous fluid is in the core. This is in contrast to plane channel
flows with finite interface thickness, which are always stabilized relative to single
fluid flow when the less viscous fluid is in contact with the wall. If the more viscous
fluid occupies the core, the axisymmetric mode usually dominates over the corkscrew
mode. It is demonstrated that, for a less viscous core, the corkscrew mode is inviscidly
unstable, whereas the axisymmetric mode is unstable for small Reynolds numbers at
high Schmidt numbers. For the parameters under consideration, the switchover occurs
at an intermediate Schmidt number of about 500. The occurrence of inviscid instability
for the corkscrew mode is shown to be consistent with the Rayleigh criterion for pipe
flows. In some parameter ranges, the miscible flow is seen to be more unstable than
its immiscible counterpart, and the physical reasons for this behaviour are discussed.

A detailed parametric study shows that increasing the interface thickness has a
uniformly stabilizing effect. The flow is least stable when the interface between the
two fluids is located at approximately 0.6 times the tube radius. Unlike for channel
flow, there is no sudden change in the stability with radial location of the interface.
The instability originates mainly in the less viscous fluid, close to the interface.

1. Introduction
Stability investigations of immiscible multi-layer flows date back to the early work

of Yih (1967), whose linear stability analysis considered the plane Couette–Poiseuille
case for fluid layers of different viscosities. By means of an asymptotic long-wave
analysis, he was able to show that such flows can be linearly unstable to an interfacial
mode for all non-zero Reynolds numbers. At the origin of this instability is the slope
discontinuity of the base velocity profile at the interface, as pointed out by Smith
(1990) and Charru & Hinch (2000). Hickox (1971) extended Yih’s work to flows in
cylindrical tubes under both axisymmetric and helical perturbations, and to fluids of
different densities. Similar to the plane case, the flow was found to be unstable for any
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non-zero Reynolds number. In contrast to the above long-wave asymptotics, Hooper
& Boyd (1983) focused on short wavelength perturbations. Their work showed that,
in the absence of surface tension, the unbounded immiscible Couette flow of two
fluids of different viscosities is always unstable. A lucid explanation of the physical
mechanism underlying this instability is provided in a short note by Hinch (1984),
based on the dynamics of the perturbation vorticity field.

Following these early works, Joseph and coauthors (Joseph, Renardy & Renardy
1984; Hu & Joseph 1989; Preziosi, Chen & Joseph 1989; Hu, Lundgren & Joseph
1990) performed a number of stability investigations on immiscible core–annular
flows. Motivated by the application of lubricated oil pipelines, their focus was on a
more viscous core. In addition to the effects of viscosity and density stratification, they
also examined weakly nonlinear dynamics, issues of pattern formation and several
other aspects. Comprehensive summaries of much of their work are provided in the
monograph by Joseph & Renardy (1992), and in the review by Joseph et al. (1997).
Hu & Patankar (1995) studied the linear stability of core–annular flows with viscosity
and density differences in a vertical pipe with respect to asymmetric disturbances
and compared with the experimental observations of Bai, Chen & Joseph (1992).
More recently, nonlinear simulations of such immiscible flows have been conducted
by several authors, among them Li & Renardy (1999) and Kouris & Tsamopoulos
(2001b, 2002b). While the aforementioned works focused on core–annular flows in
straight pipes, flows in pipes of varying cross-section have been explored as well,
motivated by the modelling of irregular rock pores in secondary oil recovery. Kouris &
Tsamopoulos (2001a, 2002a) investigated both linear and nonlinear dynamics of core–
annular flows in periodically constricted circular tubes, whereas Wei & Rumschitzki
(2002a, b) modelled the core–annular flows in an asymptotically corrugated tube.
Miscible flow instabilities, which are the focus of the present investigation, to date
have received much less attention than their immiscible counterparts. Hence, one our
aims is to identify similarities and differences between miscible core–annular flows
and their immiscible counterparts.

Several investigations have addressed the effects of miscibility for plane flow
configurations. Ranganathan & Govindarajan (2001) and Govindarajan (2004)
analysed the stability of miscible fluids of different viscosities flowing through
a channel in a three-layer Poiseuille configuration. They obtained a broadband
instability at high Schmidt numbers and low Reynolds numbers, resembling the
Yih instability. Ern, Charru & Luchini (2003) considered the stability of Couette
flows in the presence of a continuous but steep viscosity variation between the two
layers. They found that a stable discontinuous configuration could be destabilized
by diffusion. Under the assumption of infinite diffusivity, Malik & Hooper (2005)
addressed the problem of non-convergence of energy growth in a two-fluid channel
flow by replacing the interface with a miscible layer of variable viscosity. The
aforementioned investigations all focus on the plane geometry. Even for single fluids,
we know that plane channel flows can be fundamentally different from pipe flows
(Drazin & Reid 1981). Hence, one of our goals is to establish the differences between
miscible core–annular flows and their plane counterparts.

Scoffoni, Lajeunesse & Homsy (2001) describe experimental observations of a
miscible interface instability that occurs when a less viscous lighter fluid displaces
a more viscous heavier one in a vertical capillary tube. The basic flow structure
far behind the tip of the finger of displacing fluid is of core–annular form, with a
nominally cylindrical interface separating the injected fluid in the core from a thin
film of the displaced fluid left behind on the tube wall. Depending on the ratio of
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the fluid viscosities and the normalized flow rate, this miscible interface is seen to
develop axisymmetric and/or helical perturbations that eventually result in large-
scale deviations from its nominally cylindrical shape. The authors hypothesize that
the observed instabilities represent the miscible equivalent of the immiscible core–
annular flow instabilities driven by viscosity contrasts, as discussed above. However,
their observations do not address the question as to whether the existence of a
density difference is a prerequisite for the instability, or if it can also form as a result
of a viscosity difference alone. The present linear stability investigation intends to
investigate this hypothesis in more detail. Since the experimental observations by
Scoffoni et al. (2001) were made at low Reynolds numbers, we will pay particular
attention to potential instability modes in the limit of vanishing Reynolds numbers.

Petitjeans & Maxworthy (1996), Chen & Meiburg (1996), Kuang, Maxworthy &
Petitjeans (2003) and Balasubramaniam et al. (2005) investigated miscible variable-
viscosity displacements in capillary tubes from a different perspective. Although
these authors did not focus on the potentially unstable behaviour of the core–
annular flow far behind the displacement front, they recorded the front propagation
velocity, and the thickness of the film left behind on the tube wall, as a function
of the viscosity ratio, the Péclet number, and the orientation of the tube, as an
extension to the classical work by Taylor (1960) and Cox (1962) for immiscible
displacements.

The paper is organized as follows. Section 2 formulates the physical problem under
consideration, states the governing equations and defines the relevant dimensionless
parameters. Subsequently, § 3 performs the linearization of the governing system of
equations and derives the eigenvalue problem for the linear stability analysis. Section
4 describes the numerical implementation of this eigenvalue problem, and discusses
the form of the base state. Sections 5 and 6 focus on the results of the stability
analysis and present a parametric study. Finally, § 7 summarizes the findings of the
present work.

2. Problem formulation
Consider an axisymmetric pipe into which two miscible fluids are injected at the

upstream end in a concentric fashion. At the injection location, there is a sharp
change in the concentration where the two fluids meet. However, as the fluids flow
downstream in a core–annular fashion, the transition zone in the concentration profile
near the interface becomes more spread out, owing to the effects of diffusion. The
radial location of this transition zone is determined by the volume fractions of the
two injected fluids.

In the present work, we aim to study the stability of such miscible core–annular
flows in a cylindrical tube of radius R. Fluid 1 forms a film of constant thickness
along the wall of the tube, while fluid 2 occupies the centre of the tube (cf. figure 1).
The two fluids are assumed to be of equal densities but different viscosities. The axial,
radial and azimuthal coordinates are denoted by z, r and θ , respectively.

2.1. Governing equations

We employ the incompressible Navier–Stokes equations, along with a convection–
diffusion equation for species conservation

∇ · v = 0, (2.1)
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Figure 1. Principal sketch of a core–annular flow of two miscible fluids in a capillary tube.
Fluid 1, which forms a film along the tube wall, is separated from the core fluid 2 by a diffused
cylindrical interface.

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ∇ · τ , (2.2)

∂c

∂t
+ v · ∇c = κ∇2c, (2.3)

where v = (vr, vθ , vz) denotes the flow velocity, τ = µ(∇v + ∇vT ) the viscous stress
tensor and c the concentration of the outer fluid. The elements of the viscous stress
tensor τij are defined in the usual way in cylindrical coordinates (Panton 1984). The
diffusion coefficient κ is assumed constant throughout the mixture. This represents an
approximation, and we note that earlier analyses have shown that variable diffusivity
can have a significant influence on the stability of miscible interfaces (Riaz, Pankiewitz
& Meiburg 2004; Vanaparthy, Barthe & Meiburg 2006). In specifying a constitutive
relation between viscosity and concentration, we follow earlier works in literature
(Tan & Homsy 1986; Goyal & Meiburg 2006) and assume the viscosity µ to be an
exponential function of the concentration

µ = µ2e
Mc, M = ln

µ1

µ2

. (2.4)

In order to render the above governing equations dimensionless, we choose the radius
of the tube (R) as the characteristic length L∗, and the maximum viscosity (µ1 for
positive M and µ2 for negative M) as the characteristic viscosity µ∗. The velocity
averaged over the cross-section is employed as the characteristic velocity V ∗

V ∗ =
Q̇

πR2
,

where Q̇ denotes the volumetric flow rate. The characteristic time and pressure are
defined as

t∗ =
L∗

V ∗ , P ∗ =
µ∗V ∗

L∗ ,
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respectively. We thus obtain non-dimensional governing equations of the form

1

r

∂(rvr )

∂r
+

1

r

∂vθ

∂θ
+

∂vz

∂z
= 0, (2.5)

Re

[
∂vr

∂t
+ vr

∂vr

∂r
+

vθ

r

∂vr

∂θ
− v2

θ

r
+ vz

∂vr

∂z

]

= −∂p

∂r
+ eMc

[
1

r

∂

∂r

(
r
∂vr

∂r

)
+

1

r2

∂2vr

∂θ2
+

∂2vr

∂z2
− vr

r2

2

r2

∂vθ

∂θ
+ 2M

∂c

∂r

∂vr

∂r

+
M

r

∂c

∂θ

(
r

∂

∂r

(vθ

r

)
+

1

r

∂vr

∂θ

)
+ M

∂c

∂z

(
∂vr

∂z
+

∂vz

∂r

)]
, (2.6)

Re

[
∂vθ

∂t
+ vr

∂vθ

∂r
+

vθ

r

∂vθ

∂θ
+

vrvθ

r
+ vz

∂vθ

∂z

]

= −1

r

∂p

∂θ
+ eMc

[
1

r

∂

∂r

(
r
∂vθ

∂r

)
+

1

r2

∂2vθ

∂θ2
+

∂2vθ

∂z2
− vθ

r2
+

2

r2

∂vr

∂θ

+ M
∂c

∂r

(
r

∂

∂r

(vθ

r

)
+

1

r

∂vr

∂θ

)
+

2M

r

∂c

∂θ

(
1

r

∂vθ

∂θ
+

vr

r

)
+ M

∂c

∂z

(
∂vθ

∂z
+

1

r

∂vz

∂θ

)]
,

(2.7)

Re

[
∂vz

∂t
+ vr

∂vz

∂r
+

vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

]
= −∂p

∂z
+ eMc

[
1

r

∂

∂r

(
r
∂vz

∂r

)
+

1

r2

∂2vz

∂θ2
+

∂2vz

∂z2

+ M
∂c

∂r

(
∂vr

∂z
+

∂vz

∂r

)
+

1

r
M

∂c

∂θ

(
∂vθ

∂z
+

1

r

∂vz

∂θ

)
+ 2M

∂c

∂z

∂vz

∂z

]
, (2.8)

Pe

[
∂c

∂t
+ vr

∂c

∂r
+

vθ

r

∂c

∂θ
+ vz

∂c

∂z

]
=

[
1

r

∂

∂r

(
r
∂c

∂r

)
+

1

r2

∂2c

∂θ2
+

∂2c

∂z2

]
. (2.9)

This system represents the case in which fluid 1 is less viscous (M < 0). For the case
of a more viscous fluid 1 (M > 0), the expression eMc has to be replaced by eM(c−1). In
addition to the viscosity parameter M , we obtain the Reynolds number Re and the
Péclet number Pe as further dimensionless parameters

Re =
ρV ∗R

µ∗ , Pe =
V ∗R

κ
.

They indicate the ratio of convective to diffusive transport in the momentum and
species conservation equations, respectively.

3. Formulation of the stability problem
The stability problem is formulated by decomposing the variables into a z-

independent quasi-steady base state and small perturbations. In the normal mode
analysis, the perturbations are assumed to be periodic in the axial and azimuthal
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Figure 2. Qualitative shape of the base state velocity profile for a core–annular flow of two
fluids with variable viscosity, and an initially cylindrical interface at r = a.

directions, with α and β denoting the respective real wavenumbers⎛
⎜⎜⎜⎝

vr

vθ

vz

p

c

⎞
⎟⎟⎟⎠ (r, θ, z, t) =

⎛
⎜⎜⎜⎝

0
0

v̄z (r)
p̄ (z)
c̄ (r)

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

iv̂r (r)
v̂θ (r)
v̂z (r)
p̂ (r)
ĉ (r)

⎞
⎟⎟⎟⎠ ei(αz+βθ−ωt). (3.1)

In the usual way, this leads to an eigenvalue problem for the complex frequency
ω = ωr +iωi . While the imaginary part ωi accounts for the growth of the perturbation
amplitude, the real part ωr is related to the phase velocity cr =ωr/α of the perturbation
wave.

3.1. Base state

We consider a downstream location where the transition zone in the concentration
profile has grown diffusively to a finite thickness δ. In the following, we assume
Pe � 1, so that the thickness of this mixed layer changes sufficiently slowly for
the flow to be approximately parallel locally. This a priori assumption allows us to
employ a quasi-steady parallel base state for the linear stability analysis. However,
this assumption will require us to be careful when interpreting results for relatively
low values of Pe, cf. below. Provided that δ � 1, the radial concentration profile, cf.
figure 2, can be approximated as

c̄(r) = 0.5 + 0.5erf
(r − a

δ

)
. (3.2)

The axial base flow must be evaluated numerically from the dimensionless axial
momentum equation in the z-direction

dp̄

dz
= eMc̄

[
d2v̄z

dr2
+

1

r

dv̄z

dr
+ M

dv̄z

dr

dc̄

dr

]
. (3.3)

By implementing the no-slip condition v̄z|r=1 = 0 at the wall, and the symmetry
condition (dv̄z/dr)|r=0 = 0 at the axis, the velocity profile is obtained as a function
of the interface position a, the interface thickness δ, the viscosity ratio M and the
pressure gradient (dp̄/dz). The pressure gradient is then adjusted so that the velocity
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averaged over the cross-section has a value of unity, as required by the above non-
dimensionalization procedure.

3.2. Perturbation equations

Substituting (3.1) into equations (2.5)–(2.9) and linearizing around the base state
provides a set of governing equations for the complex one-dimensional eigenfunctions,
denoted by the ˆ symbol

dv̂r

dr
+

v̂r

r
+

βv̂θ

r
+ αv̂z = 0, (3.4)

Re [−ωv̂r + αv̄zv̂r ] =
dp̂

dr
− ieMc̄

[
d2v̂r

dr2
+

1

r

dv̂r

dr
−

(
β2 + 1

r2
+ α2

)
v̂r

− 2β

r2
v̂θ + 2M

dc̄

dr

dv̂r

dr
+ Mα

dv̄z

dr
ĉ

]
, (3.5)

Re [−ωv̂θ + αv̄zv̂θ ] =
−βp̂

r
− ieMc̄

[
d2v̂θ

dr2
+

1

r

dv̂θ

dr
−

(
β2 + 1

r2
+ α2

)
v̂θ

− 2β

r2
v̂r + M

dc̄

dr

(
dv̂θ

dr
− v̂θ

r
− βv̂r

r

)]
, (3.6)

Re

[
−ωv̂z + αv̄zv̂z +

dv̄z

dr
v̂r

]
= −αp̂ − ieMc̄

[
d2v̂z

dr2
+

1

r

dv̂z

dr
−

(
β2

r2
+ α2

)
v̂z

+ M
dc̄

dr

(
dv̂z

dr
− αv̂r

)
+ M

dv̄z

dr

dĉ

dr

+ Mĉ

(
d2v̄z

dr2
+

1

r

dv̄z

dr
+ M

dc̄

dr

dv̄z

dr

)]
, (3.7)

Pe

[
−ωĉ + αv̄zĉ +

dc̄

dr
v̂r

]
= −i

[
d2ĉ

dr2
+

1

r

dĉ

dr
−

(
β2

r2
+ α2

)
ĉ

]
. (3.8)

Our goal then is to solve for the dispersion relation

ω = F (α, β, Re, P e, M, a, δ) .

3.3. Energy analysis

Although the above equations determine the stability of the system, they do not
provide information regarding the mechanism driving the instability. In order to
gain insight into the complicated interactions between the different eigenfunction
components, we carry out an analysis of the disturbance energy (Hu & Joseph
1989). The disturbance kinetic energy equation is obtained by multiplying (3.5), (3.6)
and (3.7) with the complex conjugates of the perturbation velocities v̂∗

r , v̂∗
θ and

v̂∗
z , respectively. The imaginary part of the equation obtained by summing these

equations and integrating over the cross-sectional area gives the required energy
balance governing the growth of the perturbation

Ė = I − D + A + B + C. (3.9)
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Here,

Ė = ωi

∫ 1

0

(|v̂r |2 + |v̂θ |2 + |v̂z|2) rdr,

I =

∫ 1

0

dv̄z

dr
Im{v̂r v̂

∗
z } rdr,

D =
1

Re

∫ 1

0

eMc̄

[∣∣∣∣dv̂r

dr

∣∣∣∣
2

+

∣∣∣∣dv̂θ

dr

∣∣∣∣
2

+

∣∣∣∣dv̂z

dr

∣∣∣∣
2

+

(
β2

r2
+ α2

)(
|v̂r |2 + |v̂θ |2 + |v̂z|2

)

+
1

r2

(
|v̂r |2 + |v̂θ |2 + 4β Re{v̂θ v̂

∗
r }

)]
rdr,

A =
M

Re

∫ 1

0

eMc̄ dc̄

dr

1

r

(
d(r |v̂r |2)

dr
− |v̂θ |2

)
rdr,

B = Br + Bz =
M

Re

[∫ 1

0

eMc̄ dv̄z

dr
Re

{
dĉ

dr
v̂∗

z

}
rdr +

∫ 1

0

eMc̄ dv̄z

dr
Re{αĉv̂∗

r } rdr

]
,

C =
M

Re

dp̄

dz

∫ 1

0

Re{ĉv̂∗
z } rdr.

Ė repesents the overall rate of change of the disturbance kinetic energy. I denotes
the Reynolds stress term, which determines the rate of transfer of energy from the
parallel shear flow to the disturbances, and D indicates the viscous dissipation of
energy. A reflects the stress contribution due to mean viscosity gradient, while B and
C quantify the stress contributions due to the viscosity perturbation, coupled to the
concentration perturbation. The term B is divided into Br (contribution due to the
radial derivative of the viscosity perturbation) and Bz (contribution due to the axial
derivative of the viscosity perturbation).

In the following, we indicate the associated terms in the momentum equation, in
order to clarify the origin of the various above contributions: I ⇒ V · ∇V̄ , D ⇒ µ̄∇2V ,

A ⇒ ∇µ̄ · (∇V + ∇V T ), B ⇒ ∇µ · (∇V̄ + ∇V̄
T
) and C ⇒ µ∇2V̄ . Note that in the above

equation, µ̄ =eMc̄. In the C term, we have used the base state equation (3.3).
Since the magnitude of the eigenfunction is arbitrary, we normalize the

eigenfunction by its maximum absolute value. In the energy analysis, it is convenient

to normalize each term with respect to the total kinetic energy
∫ 1

0
(|v̂r |2+|v̂θ |2+|v̂z|2) rdr

(Boomkamp & Miesen 1996; Govindarajan, L’vov & Procaccia 2001). For an unstable
flow, Ė should be positive. Among the right-hand-side terms of (3.9), −D is always
negative, while all other terms can be positive or negative, respectively, indicating
production or destruction of perturbation energy.

4. Numerical implementation of the eigenvalue problem
We employ a spectral collocation method based on Chebyshev polynomials

to discretize the perturbation equations. In order to cluster the grid points in
the interfacial region, we use a stretching function on the Gauss–Lobatto points
(Govindarajan 2004). Upon discretization, the system of linear equations can be
written in matrix form as

Lφ̂ = ωPφ̂, (4.1)
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where

φ̂ = (v̂r , v̂θ , v̂z, p̂, ĉ) . (4.2)

L is a 5 × 5 differential matrix given by

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L11 −2ieMc̄βr−2 0 −D1 ieMc̄Mα
dv̄z

dr

ieMc̄

(
−2βr−2 − βMr−1 dc̄

dr

)
L22 0 βr−1 0

ieMc̄

(
−αM

dc̄

dr

)
+ Re

dv̄z

dr
0 L33 α L35

D1 + r−1 βr−1 α 0 0

Pe
dc̄

dr
0 0 0 iD2 + αPe v̄z

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the above notation, D1 = d/dr , D2 = d2/dr2 + r−1d/dr − (β2r−2 + α2), and

L11 = ieMc̄

(
D2 + 2M

dc̄

dr
D1 − r−2

)
+ αRe v̄z,

L22 = ieMc̄

(
D2 − r−2 + M

dc̄

dr
(D1 − r−1)

)
+ αRe v̄z,

L33 = ieMc̄

(
D2 + M

dc̄

dr
D1

)
+ αRe v̄z,

L35 = ieMc̄

(
M

dv̄z

dr
D1 + M

(
d2v̄z

dr2
+ r−1 dv̄z

dr
+ M

dc̄

dr

dv̄z

dr

))
.

P represents a 5 × 5 algebraic matrix with zero entries except P11 = P22 = P33 = Re

and P55 =Pe.
At the wall, we require all the velocity components and the normal derivative

of the concentration to vanish. At the axis, the singular nature of the cylindrical
coordinate system requires special treatment. The boundedness condition and the
single-valuedness of velocity, together with the continuity equation, can be used to
derive the boundary conditions at the axis (Khorrami, Malik & Ash 1989) for different
azimuthal wavenumbers β as follows

β = 0:
dv̂z

dr
= 0, v̂r = 0, v̂θ = 0,

dp̂

dr
= 0,

dĉ

dr
= 0,

β = 1: v̂z = 0, v̂r + v̂θ = 0, 2
dv̂r

dr
+

dv̂θ

dr
= 0, p̂ = 0, ĉ = 0,

β � 2: v̂z = 0, v̂r = 0, v̂θ = 0, p̂ = 0, ĉ = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

In the non-staggered collocation method, we must specify an artificial boundary
condition for the pressure at the wall. This condition is normally derived from the
radial momentum equation (3.5), evaluated at the boundary, as

dp̂

dr |r=1
= ieMc̄

[
d2v̂r

dr2
+ Mα

dv̄z

dr
ĉ

]
|r=1

. (4.4)

Khorrami (1991) shows that a non-staggered grid with the above boundary condition
does not result in a loss of accuracy, as compared to a staggered grid without pressure
boundary condition.
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Pipe Poiseuille flow, Re= 2000

α = 1, β = 0 α = 0.5, β = 1 α = 0.25, β = 2

cr ci cr ci cr ci

SH 0.93675536 −0.06374551 0.84646970 −0.07176332 0.72551688 −0.14895301
Our code 0.93675536 −0.06374551 0.84646971 −0.07176332 0.72551688 −0.14895300

Table 1. Comparison of the maximum eigenvalue of the single-fluid system with
corresponding data reported by SH.

The above complex generalized eigenvalue problem is solved using the software
package MATLAB. The required numerical resolution depends on the interface
thickness δ and is established by means of test runs. Typical calculations employ
Nr = 251 points in the radial direction for δ =0.025. For larger δ, fewer grid points
usually suffice.

4.1. Validation

Single-fluid Poiseuille flow in a pipe is known to be linearly stable for all Reynolds
numbers. Schmid & Henningson (2001 herein refered to as SH) report numerically
calculated stable eigenvalues for Re= 2000. Their results represent an obvious
first validation case, although they do not address variable viscosity effects. The
comparison of their values with present results is shown in table 1. Note that we
had to rescale our data for this purpose, since we employ the average velocity as a
characteristic scale, rather than the centreline velocity.

SH also provide the eigenvalue spectrum for the single-fluid system, consisting of
three branches (as per the classification of Mack 1976), denoted as A (wall modes), P
(centre modes) and S branches (mean speed modes). Figure 3 displays the eigenvalue
spectrum obtained in the present investigation for M = 0, which corresponds exactly to
figure 3.3 of SH. Figure 3 also indicates how the spectrum changes for M > 0. For the
sake of clarity, we show only the leading modes of the A and P branches, along with a
growing unstable mode (inside the dashed circle). As the viscosity ratio increases, the
leading modes of the A and P branches do not become unstable, although the leading
mode of the P branch shifts to the right as the centreline velocity increases. The new
unstable mode has a phase speed close to that of the interface (note that v̄z|a =0.5 = 1.5
for the single-fluid system) and may be regarded as the miscible equivalent of the
interfacial mode identified by Yih (1967). A similar observation was made by Malik &
Hooper (2005) for miscible plane channel flows.

As further validation, we compare representative linear stability results with direct
numerical simulation data for a spatially periodic axisymmetric flow. As initial
condition, the simulation employs the base state of the linear stability analysis,
along with a small concentration perturbation of amplitude 10−4. Figure 4 shows the
comparison of the growth rate obtained from the linear analysis with corresponding
simulation data. Good agreement is observed up to the time when the results begin to
diverge owing to nonlinear effects. In addition, tracking the location of the maximum
radial velocity with time allows us to calculate the phase velocity. The calculated value
is within 1% of the linear wave speed 1.45. Good agreement is furthermore observed
between the eigenfunctions obtained from the linear analysis, and corresponding
nonlinear simulation data.
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Figure 3. Eigenvalue spectrum for Re= Pe = 5000, α = β = 1, a =0.5 and δ = 0.025. For
M = 0, the spectrum agrees with the single-fluid results of SH. For M > 0, only the leading
modes of the A and P branches are shown, which are stable. However, a growing mode
appears (shown inside the dashed circle) whose phase velocity is close to the fluid velocity at
the interface.

Additional validation information will be provided below, in the form of a com-
parison between miscible linear stability results and corresponding immiscible data.

5. Results
5.1. Comparison with immiscible core–annular flow

It is commonly assumed that a high-Péclet-number miscible flow with a thin interface
will mimic the corresponding immiscible flow without interfacial tension (Scoffoni
et al. 2001). In this section, we discuss similarities and differences, and provide
quantitative comparisons for miscible and immiscible core–annular flows. For the
purpose of illustration, we have developed a separate solver for the axisymmetric
immiscible core–annular stability equations (Preziosi, Chen & Joseph 1989). This
solver was validated by comparing with the results of Preziosi et al. (1989) (e.g. their
figure 2) and of Hickox (1971).

In comparing our flow with an immiscible flow of two fluids separated by a
sharp interface, we will discuss the effects of finite interface thickness and finite
Péclet number separately. We first consider a non-zero thickness of the interface,
keeping the Péclet number infinite. Figure 5(a) compares the dispersion relation for
the axisymmetric mode of an immiscible core–annular flow (Pe = ∞, δ =0), with
corresponding results for finite δ at Pe = ∞. The result for a very thin interface,
δ = 0.001, closely matches the sharp interface case. The most dangerous wavelength
for the sharp interface is of the order of the tube radius, but increasing the interface
thickness shifts the maximum towards longer waves. The maximum growth rate is
significantly reduced. This stabilization due to increasing interface thickness is uniform
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Figure 4. Comparison of linear stability results with nonlinear axisymmetric simulation data
for (Re, P e,M, a, δ) = (500, 5000, 1, 0.6, 0.02). (a) Evolution of the maximum radial velocity
Vmax with time in the nonlinear simulation (solid line), and the corresponding linear growth
rate (dashed line). (b)–(e) Contour plots of the eigenfunctions and the corresponding nonlinear
simulation results. (b) Linear analysis – v̂z eigenfunction. (c) Nonlinear simulation – vz

perturbation. (d) Linear analysis – v̂r eigenfunction. (e) Nonlinear simulation – vr perturbation.
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Figure 5. Linear stability results for (β,M,Re, a) = (0, 1, 1, 0.5): (a) Dispersion relations for
Pe = ∞ and finite interface thickness δ. The dashed line shows the sharp interface case
(Pe = ∞, δ = 0) without interfacial tension. Finite interface thickness stabilizes the short waves
and shifts the maximum growth rate towards long waves. (b) The shift in the most dangerous
wavenumber (�), and the reduction in the maximum growth rate (�), as compared to the
sharp interface case. Both quantities vary approximately linearly with the interface thickness.

for all flow conditions, and is discussed in detail later. Figure 5(b) shows the shift
in the most amplified wavenumber αmax and the reduction of the maximum growth
rate ωi,max as functions of the interface thickness δ. Except for very thin interfaces,
the relationship is approximately linear, indicating a scaling with δ. Note that we
must exercise care in the solution procedure as the miscible equations for Pe = ∞
become singular at the critical point (where the phase velocity is equal to the base
flow velocity) when the growth rate ωi is zero (Ern et al. 2003). For this reason, we
show only regions of non-zero growth rate. Incidentally, the sharp interface is stable
to very long wave disturbances (α → 0), in agreement with Hickox’s results for this
parameter combination.

We now hold the interface thickness constant at δ = 0.005 and discuss the effect
of increasing diffusivity. Figure 6(a) demonstrates that lowering Pe from the ∞-
limit initially increases the growth rate, which indicates that miscible core–annular
flows at intermediate Pe can be more unstable than their immiscible counterparts.
Beyond an intermediate Pe-value the growth rate starts to decrease, reflecting the
existence of an optimal Péclet number. A similar observation had been made by Ern
et al. (2003) for plane Couette flow. The effect of diffusivity on the most amplified
wavenumber is monotonic, in that lower Pe-values shift the most dangerous mode
towards long waves. Thus long waves, which are stable in the immiscible case, can
become unstable when diffusion is introduced, cf. the secondary peak in figure 6(a).
Short-wave disturbances, on the other hand, show the opposite behaviour. While the
immiscible case always has a short-wave instability, as long as interfacial tension is
absent (Joseph & Renardy 1992), miscible flows display a high-wave-number cut-off.
These effects are also evident in the neutral stability curves in figure 6(b).

The non-monotonic effect of diffusivity on the stability is discussed in detail in § 6.4.
At this point, we wish to point out that the dual role of diffusivity in core–annular
flows is analogous to that of viscosity in parallel shear flows. There, the addition of
a small amount of viscosity can destabilize an inviscidly stable flow, whereas at low
Reynolds numbers, viscosity plays a stabilizing role (Panton 1984).
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Figure 6. Linear stability results for (β,M, a) = (0, 1, 0.5). (a) Effect of Pe on the growth rate
when δ = 0.005, for the parameters in figure 5. The dashed line shows the immiscible sharp
interface result. Reducing Pe from ∞ initially increases the growth rate, and subsequently
lowers it. Hence, the growth rate reaches a maximum at an intermediate Pe-value. (b) Neutral
curves in the (Re, α)-plane for (i) a sharp interface without interfacial tension, where the flow
is unstable above the dashed line. (ii) miscible flow with Pe = 105 and δ =0.005 (solid lines),
where U and S respectively, denote the unstable and stable regions. A finite Pe destabilizes
the long and stabilizes the short waves.

6. Parametric study
For analysing the influence of diffusivity, it is advantageous to distinguish between

the effects of the Schmidt number Sc = µ∗/ρκ , and those of Pe, where Pe = ReSc. In
the following, we take the reference parameters as (M, Sc, a, δ) = (±1, 1, 0.5, 0.025),
unless stated otherwise. Note that for the parameter space considered, either the
axisymmetric mode (β = 0) or the corkscrew mode (β = 1) is usually found to
dominate, with higher modes being less unstable or even stable. For this reason,
there is no further discussion of the β > 1 modes.

6.1. Effect of the viscosity ratio

Figure 7 shows the neutral stability curves in the (Re, α)-plane for various positive vis-
cosity ratios (less viscous fluid in the core). In contrast to the immiscible case, the flow
is not unstable for arbitrarily small viscosity difference (Hickox 1971). For the present
set of parameters, the critical viscosity ratio, below which the system is stable for all
Reynolds numbers, is found to be approximately Mcr = 0.11. For viscosity ratios above
Mcr, the flow is unstable beyond a critical Reynolds number Recr. This feature is again
in contrast to the immiscible case without interfacial tension, which shows instability
for all positive Reynolds numbers. Larger viscosity contrasts are more destabilizing,
as they increase the slope of the base flow profile across the interface, which is the
source of instability (Smith 1990). Thus, for higher viscosity contrast, the neutral
curves are shifted towards lower Re. The figure indicates that the corkscrew mode is
the first to destabilize, although the respective bands of unstable axial wavenumbers
for the β = 1 and β = 0 modes are nearly identical. Note that for high viscosity ratios,
the unstable region extends below Re< 10, and correspondingly Pe is less than 10.
In light of our quasi-steady-state assumption, results in this parameter range have to
be interpreted with caution.

It is important to know the maximum growth rate ωi,max , since the waves of
maximum growth rate are likely to dominate the flow (Joseph & Renardy 1992).
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mode for M = 0.5 (solid), M =1 (dashed) and M = 3 (dotted). Unstable regions lie inside
the enclosed curves. In contrast to the immiscible case without interfacial tension, a finite
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is comparable for both modes.
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Figure 8. The maximum growth rate ωi,max as a function of Re for positive viscosity ratios,
with (Sc, a, δ) = (1, 0.5, 0.025). At high Re, the growth rate of the corkscrew mode plateaus,
whereas the axisymmetric mode stabilizes. The symbol � in (a) denotes the growth rate
computed from the inviscid Rayleigh equation. (a) β =1, (b) 0.

Figure 8 shows that beyond Recr, the maximum growth rate increases rapidly for
both β = 1 and β = 0. However, while for β =1 the growth rate plateaus at high Re,
for β = 0 it reaches a maximum at an intermediate value of Re and then decreases
again. Since the maximum growth rate of the β =1 mode is an order of magnitude
higher than for β = 0, we expect the corkscrew mode to dominate in randomly
perturbed flows.

Figure 9 shows the contributions of the different terms in the perturbation energy
equation for M = 1. The wavenumber chosen is that of the maximum growth rate
at each Reynolds number. Once Re increases beyond the critical value, the net
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Figure 9. Contributions of the different terms in the perturbation energy equation for
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production exceeds the dissipation −D. Except at very low Re, where the flow is
stable, the Reynolds stress term I represents the main source of energy production
for both axisymmetric and corkscrew perturbations. However, we will see later that at
higher Schmidt numbers, the stress terms due to the stratified viscosity play a role in
destabilizing the flow. The trends seen in the growth rates are retraced in this figure,
with I plateauing at large Re for β = 1, and decaying at high Re for β = 0.

The above case of M > 0 applies to flows in which the more viscous fluid is
situated next to the wall. With respect to lubrication applications, where the thicker
fluid is placed in the core, we must consider the case M < 0. Figure 10 shows the
neutral stability curves and maximum growth rates, which indicate that for M < 0
the axisymmetric mode dominates. This is in contrast to the case with the thicker
fluid next to the wall. While the features of the β = 0 mode are qualitatively similar
for M < 0 and M > 0, the β = 1 mode now exhibits quite different properties. Both
the long and the short waves are stabilized, resulting in an island of instability in
the (Re, α)-plane. Moreover, the maximum growth rate decreases for larger viscosity
contrasts, so that high viscosity contrasts are stable to both the axisymmetric and the
corkscrew mode. Thus, for M < 0, the flow is most unstable at intermediate viscosity
ratios.

Figure 11 shows the perturbation energy contributions for the representative case
of M = − 1. The Reynolds stress term again is the main contributor to the instability.
The energy analysis thus shows that at Sc = 1, the physical mechanism driving the
instability is the transfer of energy from the bulk flow to the perturbation via the
Reynolds stresses.

Figure 12 summarizes the effect of the viscosity ratio on the critical Reynolds
number Recr at low Schmidt number. The corkscrew mode and the axisymmetric
mode are dominant for M > 0 and M < 0, respectively. For a given viscosity contrast,
the case with the less viscous core is found to be more unstable. This is consistent
with immiscible results reported by Hu & Joseph (1989) and Kouris & Tsamopoulos
(2001a), who found the more viscous core to be relatively stable. Note that the critical
Reynolds number diverges for M = 0, as the single-fluid system is linearly stable for
all Reynolds numbers.
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Figure 10. Effect of a negative viscosity ratio M < 0, for (Sc, a, δ) = (1, 0.5, 0.025). Unlike for
the M > 0 case, β = 0 is now the dominant mode, and both modes stabilize at higher Re.
Neutral curves: (a) β = 1, (b) 0. Maximum growth rate: (c) β = 1, (d) 0.

Referring back to figure 8, at high Re, the growth rate of β = 1 mode reaches
a plateau, while that of β = 0 decreases. These trends suggest that the β =1 mode
is inviscidly unstable, while the β = 0 mode is not. In the inviscid limit (Re → ∞),
equations (3.4)–(3.7), after eliminating p̂, û and ŵ using continuity, yield

(v̄z − c)

[
v̂′′

r +
v̂′

r

r

(
α2r2 + 3β2

α2r2 + β2

)
− v̂r

r2

(
(α2r2 + β2)2 + (α2r2 − β2)

(α2r2 + β2)

)]

− v̂r

[
v̄′′

z − v̄′
z

r

α2r2 − β2

α2r2 + β2

]
= 0. (6.1)

Here c = ω/α, while a prime denotes differentiation with respect to r . Equa-
tion (6.1) represents the generalization of the inviscid Rayleigh equation for
cylindrical coordinates. From this equation, the traditional Rayleigh criterion can be
derived directly (Schmid & Henningson 2001). The Rayleigh criterion in cylindrical
coordinates states as a necessary condition for inviscid instability that the quantity
[v̄′′

z − (v̄′
z/r)(α2r2 − β2/α2r2 + β2)] should change sign somewhere in the flow. Note

that for β = 1, the above condition simplifies to the one given in Sahu & Govindarajan

(2005), whereas for β =0, the classical condition of r
(
v̄′

z/r
)′

is recovered (Drazin &
Reid 1981). For positive M , this quantity never changes sign for β =0, while it changes
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Figure 12. Summary of the effect of the viscosity ratio on the critical Reynolds number, when
(Sc, a, δ) = (1, 0.5, 0.025). While the β = 1 mode (�) dominates for M > 0, β =0 (�) exhibits
lower critical Reynolds numbers for M < 0.

sign only for the corkscrew mode. Moreover, in the case of negative M , neither mode
satisfies the Rayleigh criterion. Thus, according to the Rayleigh criterion, only the
β = 1 mode for positive M has a chance of becoming inviscidly unstable. This is
consistent with our numerical results at high Re (figures 8 and 10). It should be kept
in mind that the Rayleigh criterion is only a necessary, but not a sufficient condition
for inviscid instability. To ascertain the inviscid instability, we solve (6.1) numerically.
Note that the Rayleigh equation entails a singularity at the critical point for neutral
solutions (Schmid & Henningson 2001). However, this does not pose a challenge as
long as the growth rate is positive. The maximum eigenvalue computed in this way
for β =1 in the inviscid limit agrees well with the growth rate at high Reynolds
number, cf. the symbol (�) in figure 8.
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Figure 13. Effect of the interface location a on Recr, for (M,Sc, δ) = (±1, 1, 0.025). There is
an intermediate interface position near a ≈ 0.6, for which the flow is most unstable.

6.2. Effect of the radial location of the interface

Figure 13 shows the critical Reynolds number for different radial interface locations
a, for both the axisymmetric and the corkscrew mode, and for both positive and
negative M . All the curves reach a minimum near a = 0.6, demonstrating that the
intermediate interface location is the least stable. In the case of the more viscous fluid
at the core, a narrow core completely stabilizes the β = 1 mode. In plane channel flow
(Ranganathan & Govindarajan (2001); Govindarajan 2004) the flow is destabilized
significantly when the mixed layer overlaps with the critical layer of the Tollmien–
Schlichting (TS) mode, and thus a sudden change in Recr occurs at a particular a.
In pipe flow, the TS mode does not exist (Schmid & Henningson 2001) and the
dominant mode is always close to the interface. As a result, only a gradual change
of Recr with a is observed. The most unstable interface location is about midway
between the centreline and the wall, as discussed in the following. Consider the
minimum in the neutral stability curve for the corkscrew mode at M = 1 and Sc = 1.
This minimum is reached at Recr = 59, for α = 1.9 and a = 0.6. As shown earlier, the
Reynolds stress term I =

∫ 1

0
I+(r)dr represents the main source of perturbation energy

production. Figure 14(a) shows the spatial variation of the integrand I+(r) for the
three different interface locations a = 0.3, 0.6 and 0.9. Note that the above quantities
are scaled so that the dissipation (−D) is unity. The Reynolds stress contribution is
seen to be strongest for a = 0.6, resulting in the optimal perturbation amplification
for this intermediate interface location. In order to understand why the Reynolds
stress production is strongest for an intermediate value of a, we focus on the base
flow velocity derivative v̄′

z, which drives the Reynolds stress production. Figure 14(b)
shows that this derivative is largest for the intermediate value close to a =0.6. That
v̄′

z has to have a maximum at an intermediate a-value is clear from the following
argument. Both of the limits a =0 and a = 1 correspond to single-fluid flows with a
centreline velocity of 2. For intermediate a, the less viscous fluid at the core leads to
a centreline velocity larger than 2, and to correspondingly larger velocity derivatives
near the interface location.

The production peak is seen in figure 14(a) to be always to the left of the interface,
and except when a = 0.9, lies close to it, which means that most of the instability is
generated in the less viscous fluid. From the perspective of the less viscous fluid, the
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Figure 15. Effect of the interface thickness δ on the critical Reynolds number, for (M,Sc, a) =
(±1, 1, 0.5). Increasing δ-values are uniformly stabilizing. In all the curves except β = 1,M = 1,
the interface thickness to the right of the last data point shown is stable.

interface thus behaves in a similar way to a wall, providing shear which generates the
instability. Consistently, the dissipation too shows a large increase in this region.

6.3. Effect of interface thickness

Figure 15 shows that thicker interfaces are uniformly stabilizing, confirming our
discussion in § 5.1. Further, as seen elsewhere in the paper, for M < 0 and for the
axisymmetric mode with M > 0, the regions of instability are always closed curves
in the (Re, α) or (Pe, α)-planes. These regions shrink with increasing δ, and vanish
at some value of δ less than 0.1. The rightmost data points presented in figure 15
for these three cases correspond to the largest δ at which instability is possible. In
the case of the corkscrew mode for M > 0, the critical Reynolds number diverges for
δ ∼ 0.17. Thus, we conclude that miscible core–annular flows exhibit instability only
for thin interfaces, in contrast to plane Poiseuille flows, which are unstable even when
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diffusivity) decreases the critical Reynolds number. (a) For M = 1, the axisymmetric mode
overtakes the corkscrew mode at high Sc. (b) In the case of negative M , the destabilizing effect
of Sc is not monotonic for β = 1, as there exists a window of Schmidt numbers when the flow
is completely stable (shown in dashed line).

the stratification extends across the entire channel (Ranganathan & Govindarajan
2001).

6.4. Effect of diffusivity

Figure 16 illustrates the influence of the Schmidt number on the critical Reynolds
number. For M > 0, increasing the Schmidt number uniformly reduces the critical
Reynolds number. At low Sc, the corkscrew mode is more dangerous than the
axisymmetric mode, with the opposite being true at high Sc. The crossover occurs
near Sc =300. For M < 0, the axisymmetric mode is more unstable than the corkscrew
mode for all Sc (cf. figure 16b). In fact, there exists a window of Sc for which the
corkscrew mode is stable (shown by the dashed line). In summary, at large Schmidt
number, the axisymmetric mode dominates for all M .

In figure 16(a), we can see a break in the slope for β =0, suggesting a change in
the dominant mode. This is confirmed by the neutral stability curves in figure 17.
For low Sc, the axisymmetric mode has an island of instability centreed around
intermediate wave–numbers. As Sc increases, this island shrinks, until the mode
becomes completely stable near Sc = 300. At the same time, an unstable long-wave
mode appears, whose island grows as Sc is further increased. Figure 18 displays the
corresponding dispersion relations for Re= 50. These illustrate the stabilization of
the intermediate wave numbers and the destabilization of long waves as Sc increases.
We observe similar behaviour for M < 0 and β = 1 (not shown). However, in that case
the long-wave mode destabilizes at a much higher Sc, thus resulting in the window
of stable Schmidt numbers seen in figure 16(b).

It is instructive to plot the data of figure 16(a) in terms of a critical Péclet number
Pecr = RecrSc (figure 19). For Re less than about 3 and M > 0, the corkscrew mode is
stable for all Péclet numbers, whereas the axisymmetric mode remains unstable above
some finite Pecr. We note here that at low Re, the critical Pe is independent of Re,
which suggests that the flow may be unstable in the limit Re → 0. This issue will be
discussed in the following section.

We now turn to the question raised in § 5.1 of why the stability at low Reynolds
number depends non-monotonically on the Péclet number. Towards this end, we
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Figure 17. (a) Neutral stability curves for the β = 0 mode shown in figure 16(a). (b) Additional
neutral stability curves near the crossover at Sc = 300. At low Sc, there is an island of instability
for intermediate wavenumbers. As Sc is increased, the island shrinks and eventually disappears,
while a new island appears for a long-wave mode.
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Figure 18. Dispersion relations for Re= 50, with the other parameters the same as in
figure 17(b). As Sc increases, the intermediate wavenumbers are stabilized, and a long-wave
mode goes unstable.

conduct an energy balance for the axisymmetric mode. Figure 20(a) illustrates how
the contributions of the various terms in the perturbation energy equation change
as Sc increases. For Sc = 10, the terms Br and C, representing stresses arising out of
viscosity stratification, whose contributions at Sc =1 were quite small, are of the same
order as the Reynolds stress term I . As Sc is further increased to 500 (figure 20b), the
dominant energy balance term is altered. Now, the term Br , which involves the radial
derivative of the concentration perturbation and the base flow shear, becomes the main
producer of perturbation energy. An examination of this term tells us that the
integrand Br is proportional to dĉ/dr . At a given Reynolds number, increasing the
Schmidt number amounts to increasing the Péclet number. As the Péclet number
increases, the concentration perturbation increases in magnitude, but the region over
which it is non-zero thins down in proportion to Pe−1/2. Thus when the instability is
driven by this term, a non-monotonic behaviour is displayed. The range of dominance
of the axisymmetric mode corresponds to the range where this behaviour is observed.
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Figure 19. The data of figure 16(a) replotted in terms of a critical Péclet number Pecr. At low
Reynolds number, the corkscrew mode is stable for all Péclet numbers, while the axisymmetric
mode remains unstable above some finite Pecr. For Re< O(1), the value of Pecr is independent
of Re.
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Figure 20. Perturbation energy balance as Sc increases, for (β,M, a, δ) = (0, 1, 0.5, 0.025).
(a) Sc = 10, (b) 500. The term Br , which involves the radial derivative of the concentration
perturbation and the base flow shear, becomes the dominant perturbation energy producer.
The term C also contributes to positive energy, although to a lesser extent. Key as for figure 9.

6.5. Can miscible core–annular flow be unstable in the limit Re = 0?

The long-wave analysis of Hickox (1971) shows that immiscible core–annular flows are
linearly unstable for any non-zero Reynolds number, whereas for vanishing Reynolds
number and interfacial tension, the growth rate decays to zero. Preziosi et al. (1989)
demonstrate that immiscible core–annular flows at Re= 0 are unstable towards long
waves whenever interfacial tension is present. In the absence of interfacial tension,
however, they are neutrally stable. In contrast, the short-wave analysis of Hooper &
Boyd (1983) predicts that the unbounded immiscible shear flow without interfacial
tension is always unstable. However, for their results to be applicable to bounded
shear flows, the disturbance wavelength should be much smaller than the radius of
the tube. In light of the foregoing discussion, it will be interesting to analyse whether
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Figure 21. Maximum growth rate and most dangerous wavenumber as functions of Pe, for
(β,Re, a, δ) = (0, 0, 0.5, 0.025). Miscible core–annular flows are unstable even for vanishing
Reynolds number above a critical Péclet number.

miscible core–annular flows are unstable in the limit Re= 0, and if so, at what
wavelengths. Towards this end, we employ the incompressible Stokes equations for
momentum and carry out a linear stability analysis. We retain the convective terms in
the concentration equation, so that we can address finite-Péclet-number flows. Note
that in this limit, the Schmidt number is effectively infinite. This analysis applies to
flows in which the effects of advection are negligible in the momentum equation, but
not in the concentration equation.

Since the results of the previous section indicate that at low Reynolds number
and large Schmidt number, β = 0 is the most unstable mode, we restrict ourselves
to axisymmetric perturbations. Figure 21(a) displays the maximum growth rate as a
function of Pe for M = ±1. The results show miscible core–annular flows at vanishing
Reynolds number limit to be unstable, as long as Pe is sufficiently large. Note that
Pecr for M = 1 is approximately 3 × 103, in agreement with our earlier Navier–Stokes
results for low Re (cf. figure 19). For very large Pe the growth rate decreases, as the
flow approaches the immiscible case.

Figure 21(b) indicates that the most dangerous wavenumbers are in the intermediate
range. Hence this instability is not the miscible equivalent of the Hooper & Boyd
(1983) short-wave instability. It is also not a miscible equivalent of the long-wave
instability analysed by Hickox (1971) and Preziosi et al. (1989), since those modes
require finite inertia, however small (Jiang, Helenbrook & Lin 2004). While finite
diffusion and interface thickness represent important ingredients in the instability,
the finite interface thickness alone cannot be at its origin, as an increasing interface
thickness is stabilizing (cf. figure 22). Advection of concentration perturbations, i.e.
a finite value of Pe, is a prerequisite for the instability. We wish to remark that
inertialess instabilities have been encountered in two-layer flows with free surfaces,
although their exact instability mechanism is not fully understood (Loewenherz &
Lawrence 1989; Chen 1993; Jiang et al. 2004).

We note here that a core–annular type miscible-flow instability has recently been
observed experimentally at Péclet number of O(104–105) and Reynolds number less
than 1 (D. Salin, personal communication).
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Figure 22. Neutral stability curves in the (Pe, α)-plane for different interface thicknesses, at
(β,Re,M, a) = (0, 0, 1, 0.5). The unstable region lies inside the curves. Increasing the interface
thickness has a stabilizing influence in the limit of vanishing Reynolds number.

7. Conclusion
The current investigation addresses the temporal stability of variable viscosity,

miscible core–annular flows. Such flows are distinct from their immiscible counterparts
in two ways. First of all, they are characterized by a finite interface thickness, which
we show to have a uniformly stabilizing effect. Hence, instabilities are seen to exist
only for thin interfaces, similar to miscible two-fluid Couette flows (Ern et al. 2003),
and in contrast to miscible plane Poiseuille flows which exhibit instability even under
fully stratified conditions.

Secondly, diffusion is now present and can result in some unexpected behaviour.
Specifically, we find that small amounts of diffusion (high Pe) can be destabilizing,
rendering the miscible flow more unstable than a corresponding immiscible one. Low
Pe, on the other hand, stabilizes the flow, consistent with the behaviour observed in
plane Couette and in channel flow. Hence, there exists an optimal Péclet number at
which the growth rate reaches a maximum. An energy analysis reveals that, depending
on the Schmidt number, the mechanism of energy transfer from the base flow to the
disturbances is either through the Reynolds stress term or via the stresses due to
viscosity perturbations. The latter gives rise to the non-monotonic behaviour.

For a wide range of governing parameters, miscible core–annular flows are linearly
unstable towards both intermediate and long-wave disturbances. Instability can occur
even for vanishing Reynolds number. Under these conditions, the most amplified
wavelength is found to be several tube diameters. This is in contrast to immiscible
core–annular flows without interfacial tension, which are known to be neutrally
stable towards long waves. While the axisymmetric mode is unstable at low Reynolds
number, the corkscrew mode is found to be inviscidly unstable for M > 0. It is shown
to satisfy the pipe-Rayleigh criterion above a critical viscosity ratio, consistent with
the stability results for high Re.

There are many open questions regarding the nonlinear behaviour of these
instabilities. In addition, the effects of density stratification and their interplay with
viscosity variations hold great potential for interesting dynamics. Efforts to unravel
the governing mechanisms under those conditions are currently under way.
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